January 2010

President's Letter

Dear Membership,

Greetings and Happy New Year! I'm honored to step into the role of President of WAAC and look forward to our next annual meeting in Portland this September. Plans are underway with the Portland Art Museum (PAM) and possibly a couple other venues for functions but they're still in the planning stages. I'm hoping the meeting will be educational for the WAAC membership and the greater Portland arts community as well.

The annual meeting was last held in Portland in 2002, which doesn't seem very long ago, but much has changed since then. The Portland Art Museum has a new Executive Director, and the museum purchased the former Masonic Temple next door (in 1980s), which was renovated and now holds the Jubitz Center for Modern and Contemporary Art.

Former president, Claire Dean, wrote much regarding the city of Portland in the 2002 WAAC Newsletters so I thought I'd augment her information about Portland with some fond memories of my time and history, especially as I have come to know the city, its art organizations, and conservation community.

In 1993, my husband Steven was offered a graphic design position at Nike. We were living in Los Angeles, and I came up with Steven for the interview to see what Portland was like. It was so green and beautiful although it was a rainy, 60 degrees Fahrenheit day in July; but I soon came to see coffee would take care of that. Coffee is a staple in the Pacific Northwest, which has an abundance of coffee hut drive-thrus and Starbucks.

Just before our move to Portland, I received my acceptance letter from the Winterthur Conservation Program at the University of Delaware. Both opportunities were too good to turn down so I decided to commute from Delaware to Portland. Fortunately, I spent the next two summers in Portland, the first as an intern at PAM, and the second as an intern on the restoration of the Astoria column, with Claire Dean and Jonathan Taggart.

As I came to see, the Portland Art Museum has a great history; it's the oldest museum on the west coast and one of the seven oldest in the nation. I was really amazed when I learned that the 1913 Armory Show traveled to Portland, which was the only west coast venue. Sally Lewis, whose collection of Roman classical bronzes I was rehousing, was friends with Brancusi and many European artists and was instrumental in bringing the show and modern art to Portland. She later donated her sculpture, Brancusi's A Muse, to the museum.

During my summer internship at PAM, I was fortunate not only to have the opportunity to watch artists Mike and Doug Starn install their work Sphere of Influence, but also to sit a few feet away from them in the park a few times during lunch. (I still kic myself for not going over to say hello.) I also saw Spaulding Gray's monologue, Gray's Anatomy, which I missed in LA because it sold out within the first few hours, unlike Portland, where we bought tickets the same week. I started to see there were some great advantages to living in this small beautiful city.

Conservation also has a long history in Portland. The Pacific Northwest Regional Center was established in the 1970s at PAM with the help of NEA funding. Unfortunately over time, the regional center did not last because as with many centers established throughout the country with NEA money, sustainable funding was not established or forthcoming. However, PAM kept the laboratory and conservation work continues on the museum's collections.

When I interned at PAM in 1994, the conservation lab was located on the same
On Again, Off Again:
Conservation Aspects in Accessible Display Case Design

The National Museum of Natural History (NMNH) and the National Museum of the American Indian (NMAI) are in the final stretch of a three year collaboration with the Anchorage Museum at Rasmuson Center to create an Alaska Native cultural exhibition. The project, developed in conjunction with the Smithsonian’s Arctic Studies Center is intended to provide an unprecedented level of access and interaction between Smithsonian collections and indigenous source communities. The gallery, located in the new wing of the Anchorage Museum, will include both exhibition and research spaces. Floor-to-ceiling glass cases will display almost 600 Alaska Native heritage objects from the Smithsonian collections, and at the same time be available for hands-on examination and discussion by Alaska Native elders, artists, and scholars.

Smithsonian conservators have been working to ensure the long-term preservation of these objects, while simultaneously facilitating the access requirement of the loan. Meeting conservation criteria to allow objects to be safely removed from exhibit for study has been an ongoing process, which has included working closely with exhibition designers, curators, fabricators, and mountmakers. Conservators have also addressed the conservation concerns of display cases utilizing a tensioned rod system to support fragile objects in an active seismic environment and the design of object mounts that properly support objects inside the display case; allowing the objects to be visually accessible for study; and serve as a means of conveyance to bring objects from exhibit cases to the study center. This paper summarizes the conservation challenges of working with a unique exhibition case design in which objects will be routinely removed from exhibition for study and museum programs.

The newly completed expansion wing of the AM holds the 10,000 sq ft Arctic Studies Center Gallery and adjacent rooms and spaces for the objects to be brought to for study. Ten Alaskan cultural groups are represented in the ASC gallery’s seven community cases. The objects are grouped within each case by the three major themes of home and community; land, seas and rivers; and ceremony and celebration. The objects are placed at “use” level with boots on the floor level deck, hats at head height, etc. In addition, there is a large thematic case with cross cultural groupings of objects types including boat models, baskets, pipes, goggles, and masks. The massive floor to ceiling community cases are double sided metal construction tied into the gallery floor and ceiling, with floor to ceiling glass panels. The large glass panels of the cases are also the case doors and open with actuators; the doors slide laterally to allow access to the case interiors.

Objects are displayed in these cases cantilevered from steel rods with attached hardware designed to allow objects to be removed for study and re-installed for exhibition multiple times over the length of the twelve year loan. This case hardware consists of spring tensioned vertical steel rods attached to the ceiling and screwed into the deck, all engineered to meet seismic requirements. Attached at a 90 degree vertical angle to the steel rods are collared, hollow steel bracket arms. The collars of the bracket arms are tightened on the vertical rods with Allen screws and can be infinitely adjusted along the vertical rods. Steel mount stems attached to the object mount slide into the bracket arms and are secured with thumb screws. Both the bracket arms and mount stems are square stock to prevent any rotation of the mounted object. Object mounts are primarily fabricated from brass with a pin extending from the back that drops into a hole in the mount stem. This pin is tightened to the mount stem with a small screw. If required the mounted object can be removed from the system via the pin. The pin also allows some adjustment of the object position in the case.
fabrication would be the most complex part of the project. The factors of the exhibit design of vertical rods, the access component, and the fact that Anchorage is in an earthquake zone necessitated complex mounts. The mountmakers had to design mounts to allow the objects to hang suspended from vertical rods, meet seismic criteria, protect vulnerable parts, hold the object immobile when handled, and serve as a means of conveyance from case to cart and back. Finally, the mountmakers were asked to make a mount that allowed maximum visibility for study such as the backs of masks and interiors of baskets. This was no small task.

The objects chosen for this loan are primarily ethnographic and are made from a wide variety of mostly organic materials including soft woods and other easily marred object types. They are also often constructed with many protruding and dangling parts and are difficult to mount for a standard display. In addition, even after conservation some of these objects remain inherently weak, and the mountmakers were asked to make supportive mounts for these objects. This type of mounting required extensive object handling by the mountmakers who were creating very extensive brass mounts to meet the design requirements. This type of intrusive cage-like mount is not the normal approach of the mount-maker who works to make mounts minimal and invisible. In addition, there was a balance of tightening the brass clips to make the object immobile while at the same time not pressing into or marring soft or friable surfaces.

The exhibition mounting system was new to both the conservators and mountmakers. There was a learning curve for both groups and some frustration early on until conservators could clearly articulate the mounting requirements. For example we asked that objects be locked on their mounts. To mountmakers this meant they could not be removed while to conservators this meant that they could not be removed and also could...
not twist or rotate when handled. Good communication between conservators from two museums, mountmakers, and curators was critical to the success of this project.

Because of the complexity of the design and the untired access component, a full scale wooden mockup of a community case was built at SI's Museum Support Center. This mockup was critical for mount making to test the mounts on an untired vertical rod system. Having full-sized case mockups also allowed the team to confirm object placement in the cases, hopefully eliminating adjustments during install. We could determine if the spacing between objects allowed safe access for removal and also determine the object removal sequence, in other words, what other objects needed to be removed to safely access the target object. We were also able to address any vibration issues and minimize them.

Also, in the early designs the objects that were high up in the case were placed further back in the cases to provide lighting for objects below. Conservators worked with the designer to move the upper objects placed at 7 feet and above forward as much as possible by lengthening the bracket arm to provide safe removal without having to remove the objects below. All of the case positioning became a balancing act because lengthening the bracket arm introduced more vibration in the system but allowed easier and safer access to the object.

Case density was carefully reviewed. A safe working distance between objects for removal is required as removal entailed reaching behind the object, with a small tethered screwdriver to loosen the cylindrical slotted thumb screw on the bracket arm. In the end, for various reasons, enough objects were dropped from the loan to provide the needed distance between objects. For seismic movement the engineers asked for 2 inches between objects but we found about 4 or 5 inches between objects allowed us to reach back to access the thumb screw and release the mount stem.

A significant concern was vibrations in the vertical rods. These vibrations occurred when accessing objects in the cases. Vibration was minimized by additional hardware to tie the vertical rods together and by simply grasping the vertical rod during object handling. The team also worked to keep the distance between the mounted object and vertical rod as short as possible to reduce vibration. Mountmakers also used heavier, stiffer brass stock when making the object mount to reduce any bounce.

Large and long objects such as harpoons often require multiple mount attachments for stable mounting. Multiple mount stems require exacting bracket arm spacing and a more complicated object removal and re-installation. Aligning the mount at two points, while sometimes working blind, proved challenging for some objects, and there is a learning curve for managing the install and de-install to prevent locking while moving the mount stems into the bracket arms in unison.

There were some modifications to the primary mounting system. While the design initially did not include Plexiglas as a mounting component we found that in some cases additional support was needed to provide safe conveyance. We had a large group of boat models constructed of fragile materials such as birch bark and stretched skin, often with projecting paddles. Plexiglas platforms provided the least visible and most protective alternative, allowing removal without handling the object. While these were not part of the original design concept they became a standard component for mounting this exhibit.

Large flat textiles were mounted onto support boards. In a few cases, because of limited access to the thumb screw, a modification of the mounting system allows the support board to be removed from a metal frame that remains in the case while the textile travels flat on a cart for study.

Limited access at the ends of cases, which do not open, restricts access to objects placed at the ends, and some large objects such as snowshoes need staff on both sides of the double sized case to de-install. Some very large or complex objects will not be removed from the cases because of the difficulty of access. Also, some objects such as a rabbit fur garment that actively sheds are not good candidates for removal and will remain in the case. Because some objects will not be removed, care needed to be taken to confirm that the surrounding objects could be maneuvered safely around the fixed object.

There were many practical considerations that became apparent during this process. Install and de-install would be a group effort. It was quickly realized that the steel case components especially the projecting bracket arms present some danger. This confirmed the need for a spotter to ensure the person working in the case does not harm themselves or an object with a careless elbow. Other considerations include possible surface damage of mounts during repeated handling including scratching the Plexiglas and paint of the brass mount and leaving fingerprints on the Plexiglas and show fabric used on some mounts.

As this system is new, all parties will learn along the way. The success of the access component is yet to be determined because it is a new endeavor. The cart system will hopefully allow a high level of access needed for study, cultural consultation, and education while at the same time offering protection for fragile artifacts.

This exhibition has relied very heavily on the expertise and ingenuity of the mount making team, and the conservators extend their thanks to the mountmakers for their patience and hard work.