Between Foraging and Farming

Bruce D. Smith

In both biology and archaeology, research into agricultural origins shows increasing long-term promise. On page 1661 of this issue, for example, Hard and Roney (1) present their findings from the Cerro Juanaquita site in Chihuahua, Mexico, that provide the latest in a decade-long string of surprises regarding the initial adoption of Mexican crop plants by hunters and gathering societies in the southwestern United States and northern Mexico and the subsequent development of agriculture in the region. In a larger context, research at this site also highlights recent research advances and changing perspectives on agricultural origins worldwide.

The most dramatic recent advances in understanding agricultural origins center on documenting the domestication of individual species. On the biological side, comprehensive genetic profile comparisons have revealed the identity and geographical range of present-day wild progenitor populations of a number of important domesticated plants (2). At the same time, a number of related advances in archaeology and archaeobiology now permit accurate recognition of the temporal and spatial context of the initial domestication of individual species. Flotation technology has vastly improved the archaeological recovery of plant and animal remains. The morphological changes that mark the adaptive syndrome of domestication in seed plants and the age and sex profile changes that reflect human management of newly domesticated herd animals are now reasonably well documented (3). This in turn allows clear recognition of early domesticates in archaeological contexts. In addition, small sample accelerator mass spectrometer radiocarbon dating now allows the unequivocal temporal placement of these early domesticates (4).

In tandem, research incorporating these biological and archaeological advances can produce remarkable results. Genetic fingerprinting, for example, recently pinpointed the present-day location of the particular progenitor populations were growing less than 250 km from the site of Abu Hureyra, which has yielded the earliest evidence of initial domestication of this important cereal grain 9500 years ago (3, 5). Similarly, the earliest evidence for the independent domestication of Cucurbita pepo squash in eastern North America 5000 years ago comes from the Phillips Spring site in Missouri, located less than 60 km north of where populations of its genetically fingerprinted wild Oaxacan ancestor still grow today (6).

Studies like these are documenting important landmarks on the developmental landscape that lies between foraging and farming. This "in-between" territory has long been viewed as a processually brief transitional interlude separating the steady-state solutions of hunting-gathering and agriculture. But as research on such "in-between" landscapes continues, they are turning out to be far larger and far more complicated than previously recognized and to hold the promise of many more surprises like Cerro Juanaquita.

Bruce D. Smith

In both biology and archaeology, research into agricultural origins shows increasing long-term promise. On page 1661 of this issue, for example, Hard and Roney (1) present their findings from the Cerro Juanaquita site in Chihuahua, Mexico, that provide the latest in a decade-long string of surprises regarding the initial adoption of Mexican crop plants by hunters and gathering societies in the southwestern United States and northern Mexico and the subsequent development of agriculture in the region. In a larger context, research at this site also highlights recent research advances and changing perspectives on agricultural origins worldwide.

The most dramatic recent advances in understanding agricultural origins center on documenting the domestication of individual species. On the biological side, comprehensive genetic profile comparisons have revealed the identity and geographical range of present-day wild progenitor populations of a number of important domesticated plants (2). At the same time, a number of related advances in archaeology and archaeobiology now permit accurate recognition of the temporal and spatial context of the initial domestication of individual species. Flotation technology has vastly improved the archaeological recovery of plant and animal remains. The morphological changes that mark the adaptive syndrome of domestication in seed plants and the age and sex profile changes that reflect human management of newly domesticated herd animals are now reasonably well documented (3). This in turn allows clear recognition of early domesticates in archaeological contexts. In addition, small sample accelerator mass spectrometer radiocarbon dating now allows the unequivocal temporal placement of these early domesticates (4).

In tandem, research incorporating these biological and archaeological advances can produce remarkable results. Genetic fingerprinting, for example, recently pinpointed the present-day location of the particular progenitor populations were growing less than 250 km from the site of Abu Hureyra, which has yielded the earliest evidence of initial domestication of this important cereal grain 9500 years ago (3, 5). Similarly, the earliest evidence for the independent domestication of Cucurbita pepo squash in eastern North America 5000 years ago comes from the Phillips Spring site in Missouri, located less than 60 km north of where populations of its genetically fingerprinted wild Oaxacan ancestor still grow today (6).

Studies like these are documenting important landmarks on the developmental landscape that lies between foraging and farming. This "in-between" territory has long been viewed as a processually brief transitional interlude separating the steady-state solutions of hunting-gathering and agriculture. But as research on such "in-between" landscapes continues, they are turning out to be far larger and far more complicated than previously recognized and to hold the promise of many more surprises like Cerro Juanaquita.

Bruce D. Smith

In both biology and archaeology, research into agricultural origins shows increasing long-term promise. On page 1661 of this issue, for example, Hard and Roney (1) present their findings from the Cerro Juanaquita site in Chihuahua, Mexico, that provide the latest in a decade-long string of surprises regarding the initial adoption of Mexican crop plants by hunters and gathering societies in the southwestern United States and northern Mexico and the subsequent development of agriculture in the region. In a larger context, research at this site also highlights recent research advances and changing perspectives on agricultural origins worldwide.

The most dramatic recent advances in understanding agricultural origins center on documenting the domestication of individual species. On the biological side, comprehensive genetic profile comparisons have revealed the identity and geographical range of present-day wild progenitor populations of a number of important domesticated plants (2). At the same time, a number of related advances in archaeology and archaeobiology now permit accurate recognition of the temporal and spatial context of the initial domestication of individual species. Flotation technology has vastly improved the archaeological recovery of plant and animal remains. The morphological changes that mark the adaptive syndrome of domestication in seed plants and the age and sex profile changes that reflect human management of newly domesticated herd animals are now reasonably well documented (3). This in turn allows clear recognition of early domesticates in archaeological contexts. In addition, small sample accelerator mass spectrometer radiocarbon dating now allows the unequivocal temporal placement of these early domesticates (4).

In tandem, research incorporating these biological and archaeological advances can produce remarkable results. Genetic fingerprinting, for example, recently pinpointed the present-day location of the particular progenitor populations were growing less than 250 km from the site of Abu Hureyra, which has yielded the earliest evidence of initial domestication of this important cereal grain 9500 years ago (3, 5). Similarly, the earliest evidence for the independent domestication of Cucurbita pepo squash in eastern North America 5000 years ago comes from the Phillips Spring site in Missouri, located less than 60 km north of where populations of its genetically fingerprinted wild Oaxacan ancestor still grow today (6).

Studies like these are documenting important landmarks on the developmental landscape that lies between foraging and farming. This "in-between" territory has long been viewed as a processually brief transitional interlude separating the steady-state solutions of hunting-gathering and agriculture. But as research on such "in-between" landscapes continues, they are turning out to be far larger and far more complicated than previously recognized and to hold the promise of many more surprises like Cerro Juanaquita.

Bruce D. Smith
environmental settings across a broad area of the American Southwest. The mass spectrometry dates also suggest that substantial artificial terrace construction occurred over a short period of time. This sets Cerro Juanaqueña apart in terms of population size and the scale of labor investment both from contemporary river valley settlements of the arid Tucson Basin area as well as the seasonally occupied cave sites of the higher elevations Mogollon Highlands and Colorado Plateau (see map). In addition, a number of local nondomesticated seed plants appear to qualify as economically important “in-between” species, on the basis of their abundance and the associated high frequency of ground stone seed processing tools.

In these respects Cerro Juanaqueña adds to the set of alternative developmental pathways from foraging to farming documented for the southwestern United States in the past decade. It also adds to the growing suspicion that when maize and squash were introduced into the region, some southwestern societies were no longer pristine hunter-gatherers but had already established low-level food production economies centered on the management of indigenous “in-between” seed crops (8), and perhaps on as yet unrecognized local domesticates.

References and Notes

8. The Cocopa and the Owens Valley Paiute provide well-known southwestern ethnographic examples of such sustained management of nondomesticated seed crops.